Thứ Tư, 30 tháng 9, 2020

Hàm số bậc hai

Hàm số bậc hai được cho bởi công thức

y = ax2 + bx + c (a ≠ 0).

Tập xác định của hàm số này là D = R

Hàm số y = ax2 (a ≠ 0) đã học ở lớp 9 là một trường hợp riêng của hàm số này.

I. ĐỒ THỊ CỦA HÀM SỐ BẬC HAI

Đồ thị của hàm số y = ax2 + bx + c (a ≠ 0) là một đường parabol có đỉnh là điểm IToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án, có trục đối xứng là đường thẳng x = -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án. Parabol này quay bề lõm lên trên nếu a > 0, xuống dưới nếu a < 0.

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Cách vẽ

Để vẽ parabol y = ax2 + bx + c (a≠0) ta thực hiện các bước

1) Xác định tọa độ của đỉnh IToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2) Vẽ trục đối xứng x = -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án .

3) Xác định tọa độ các giao điểm của parabol với trục tung (điểm (0; c)) và trục hoành (nếu có).

Xác định thêm một số điểm thuộc đồ thị, chẳng hạn điểm đối xứng với điểm (0; c) qua trục đối xứng của parabol, để vẽ đồ thị chính xác hơn.

4) Vẽ parabol.

Khi vẽ parabol cần chú ý đến dấu của hệ số a (a > 0 bề lõm quay lên trên, a < 0 bề lõm quay xuống dưới).

II. CHIỀU BIẾN THIÊN CỦA HÀM SỐ BẬC HAI

Dựa vào đồ thị hàm số y = ax2 + bx + c (a≠0) ta có bảng biến thiên của nó trong hai trường hợp a > 0 và a < 0 như sau

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Từ đó, ta có định lí dưới đây

Định lí

Nếu a < 0 thì hàm số y = ax2 + bx + c nghịch biến trên khoảng (–∞; -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án); đồng biến trên khoảng (-Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án; +∞).

Nếu a > 0 thì hàm số y = ax2 + bx + c đồng biến trên khoảng (–∞; -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án) nghịch biến trên khoảng (-Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án; +∞).

 

 


Nguồn : Hàm số bậc hai

Không có nhận xét nào:

Đăng nhận xét